Left Termination of the query pattern
p_in_2(a, g)
w.r.t. the given Prolog program could not be shown:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
Clauses:
p(d(e(t)), const(1)).
p(d(e(const(A))), const(0)).
p(d(e(+(X, Y))), +(DX, DY)) :- ','(p(d(e(X)), DX), p(d(e(Y)), DY)).
p(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) :- ','(p(d(e(X)), DX), p(d(e(Y)), DY)).
p(d(d(X)), DDX) :- ','(p(d(X), DX), p(d(e(DX)), DDX)).
Queries:
p(a,g).
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (f,b) (b,b) (b,f) (f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x2, x3, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x2, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x2, x3, x5)
U5_gg(x1, x2, x3) = U5_gg(x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x5)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x2, x3, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x2, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x2, x3, x5)
U5_gg(x1, x2, x3) = U5_gg(x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x5)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → U1_AG(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → P_IN_AG(d(e(X)), DX)
P_IN_AG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_AG(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
P_IN_AG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → U1_GG(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GG(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(d(X)), DDX) → U5_GG(X, DDX, p_in_ga(d(X), DX))
P_IN_GG(d(d(X)), DDX) → P_IN_GA(d(X), DX)
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(d(X)), DDX) → U5_GA(X, DDX, p_in_ga(d(X), DX))
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
U5_GA(X, DDX, p_out_ga(d(X), DX)) → U6_GA(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U5_GA(X, DDX, p_out_ga(d(X), DX)) → P_IN_GA(d(e(DX)), DDX)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_GA(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_GA(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U5_GG(X, DDX, p_out_ga(d(X), DX)) → U6_GG(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U5_GG(X, DDX, p_out_ga(d(X), DX)) → P_IN_GG(d(e(DX)), DDX)
U3_GG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_GG(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U3_GG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
U1_GG(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_GG(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U1_GG(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
U3_AG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_AG(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U3_AG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
P_IN_AG(d(d(X)), DDX) → U5_AG(X, DDX, p_in_aa(d(X), DX))
P_IN_AG(d(d(X)), DDX) → P_IN_AA(d(X), DX)
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → U1_AA(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → P_IN_AA(d(e(X)), DX)
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_AA(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_AA(d(e(X)), DX)
P_IN_AA(d(d(X)), DDX) → U5_AA(X, DDX, p_in_aa(d(X), DX))
P_IN_AA(d(d(X)), DDX) → P_IN_AA(d(X), DX)
U5_AA(X, DDX, p_out_aa(d(X), DX)) → U6_AA(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U5_AA(X, DDX, p_out_aa(d(X), DX)) → P_IN_AA(d(e(DX)), DDX)
U3_AA(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_AA(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U3_AA(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
U1_AA(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_AA(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U1_AA(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
U5_AG(X, DDX, p_out_aa(d(X), DX)) → U6_AG(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U5_AG(X, DDX, p_out_aa(d(X), DX)) → P_IN_AG(d(e(DX)), DDX)
U1_AG(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_AG(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U1_AG(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → P_IN_AG(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x2, x3, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x2, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x2, x3, x5)
U5_gg(x1, x2, x3) = U5_gg(x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x5)
U5_GG(x1, x2, x3) = U5_GG(x2, x3)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U5_GA(x1, x2, x3) = U5_GA(x3)
U4_GA(x1, x2, x3, x4, x5) = U4_GA(x1, x2, x4, x5)
U4_GG(x1, x2, x3, x4, x5) = U4_GG(x5)
U3_AA(x1, x2, x3, x4, x5) = U3_AA(x5)
U3_AG(x1, x2, x3, x4, x5) = U3_AG(x2, x3, x5)
U2_GA(x1, x2, x3, x4, x5) = U2_GA(x3, x5)
U1_GG(x1, x2, x3, x4, x5) = U1_GG(x2, x4, x5)
U4_AG(x1, x2, x3, x4, x5) = U4_AG(x5)
U2_AA(x1, x2, x3, x4, x5) = U2_AA(x5)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
U1_AG(x1, x2, x3, x4, x5) = U1_AG(x4, x5)
U4_AA(x1, x2, x3, x4, x5) = U4_AA(x5)
U6_GA(x1, x2, x3, x4) = U6_GA(x4)
U6_GG(x1, x2, x3, x4) = U6_GG(x4)
U6_AA(x1, x2, x3, x4) = U6_AA(x4)
U5_AG(x1, x2, x3) = U5_AG(x2, x3)
P_IN_GG(x1, x2) = P_IN_GG(x1, x2)
U2_AG(x1, x2, x3, x4, x5) = U2_AG(x5)
U1_AA(x1, x2, x3, x4, x5) = U1_AA(x5)
U3_GG(x1, x2, x3, x4, x5) = U3_GG(x2, x3, x5)
P_IN_AG(x1, x2) = P_IN_AG(x2)
U5_AA(x1, x2, x3) = U5_AA(x3)
U6_AG(x1, x2, x3, x4) = U6_AG(x4)
P_IN_AA(x1, x2) = P_IN_AA
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x2, x5)
U2_GG(x1, x2, x3, x4, x5) = U2_GG(x5)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → U1_AG(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → P_IN_AG(d(e(X)), DX)
P_IN_AG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_AG(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
P_IN_AG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → U1_GG(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GG(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(d(X)), DDX) → U5_GG(X, DDX, p_in_ga(d(X), DX))
P_IN_GG(d(d(X)), DDX) → P_IN_GA(d(X), DX)
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(d(X)), DDX) → U5_GA(X, DDX, p_in_ga(d(X), DX))
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
U5_GA(X, DDX, p_out_ga(d(X), DX)) → U6_GA(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U5_GA(X, DDX, p_out_ga(d(X), DX)) → P_IN_GA(d(e(DX)), DDX)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_GA(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_GA(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U5_GG(X, DDX, p_out_ga(d(X), DX)) → U6_GG(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U5_GG(X, DDX, p_out_ga(d(X), DX)) → P_IN_GG(d(e(DX)), DDX)
U3_GG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_GG(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U3_GG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
U1_GG(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_GG(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U1_GG(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
U3_AG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_AG(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U3_AG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
P_IN_AG(d(d(X)), DDX) → U5_AG(X, DDX, p_in_aa(d(X), DX))
P_IN_AG(d(d(X)), DDX) → P_IN_AA(d(X), DX)
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → U1_AA(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → P_IN_AA(d(e(X)), DX)
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_AA(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_AA(d(e(X)), DX)
P_IN_AA(d(d(X)), DDX) → U5_AA(X, DDX, p_in_aa(d(X), DX))
P_IN_AA(d(d(X)), DDX) → P_IN_AA(d(X), DX)
U5_AA(X, DDX, p_out_aa(d(X), DX)) → U6_AA(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U5_AA(X, DDX, p_out_aa(d(X), DX)) → P_IN_AA(d(e(DX)), DDX)
U3_AA(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_AA(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U3_AA(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
U1_AA(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_AA(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U1_AA(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
U5_AG(X, DDX, p_out_aa(d(X), DX)) → U6_AG(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U5_AG(X, DDX, p_out_aa(d(X), DX)) → P_IN_AG(d(e(DX)), DDX)
U1_AG(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_AG(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U1_AG(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → P_IN_AG(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x2, x3, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x2, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x2, x3, x5)
U5_gg(x1, x2, x3) = U5_gg(x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x5)
U5_GG(x1, x2, x3) = U5_GG(x2, x3)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U5_GA(x1, x2, x3) = U5_GA(x3)
U4_GA(x1, x2, x3, x4, x5) = U4_GA(x1, x2, x4, x5)
U4_GG(x1, x2, x3, x4, x5) = U4_GG(x5)
U3_AA(x1, x2, x3, x4, x5) = U3_AA(x5)
U3_AG(x1, x2, x3, x4, x5) = U3_AG(x2, x3, x5)
U2_GA(x1, x2, x3, x4, x5) = U2_GA(x3, x5)
U1_GG(x1, x2, x3, x4, x5) = U1_GG(x2, x4, x5)
U4_AG(x1, x2, x3, x4, x5) = U4_AG(x5)
U2_AA(x1, x2, x3, x4, x5) = U2_AA(x5)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
U1_AG(x1, x2, x3, x4, x5) = U1_AG(x4, x5)
U4_AA(x1, x2, x3, x4, x5) = U4_AA(x5)
U6_GA(x1, x2, x3, x4) = U6_GA(x4)
U6_GG(x1, x2, x3, x4) = U6_GG(x4)
U6_AA(x1, x2, x3, x4) = U6_AA(x4)
U5_AG(x1, x2, x3) = U5_AG(x2, x3)
P_IN_GG(x1, x2) = P_IN_GG(x1, x2)
U2_AG(x1, x2, x3, x4, x5) = U2_AG(x5)
U1_AA(x1, x2, x3, x4, x5) = U1_AA(x5)
U3_GG(x1, x2, x3, x4, x5) = U3_GG(x2, x3, x5)
P_IN_AG(x1, x2) = P_IN_AG(x2)
U5_AA(x1, x2, x3) = U5_AA(x3)
U6_AG(x1, x2, x3, x4) = U6_AG(x4)
P_IN_AA(x1, x2) = P_IN_AA
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x2, x5)
U2_GG(x1, x2, x3, x4, x5) = U2_GG(x5)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 6 SCCs with 25 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_AA(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → P_IN_AA(d(e(X)), DX)
U1_AA(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
U3_AA(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → U1_AA(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_AA(d(e(X)), DX)
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x2, x3, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x2, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x2, x3, x5)
U5_gg(x1, x2, x3) = U5_gg(x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x5)
U3_AA(x1, x2, x3, x4, x5) = U3_AA(x5)
U1_AA(x1, x2, x3, x4, x5) = U1_AA(x5)
P_IN_AA(x1, x2) = P_IN_AA
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_AA(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → P_IN_AA(d(e(X)), DX)
U1_AA(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
U3_AA(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → U1_AA(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_AA(d(e(X)), DX)
The TRS R consists of the following rules:
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
The argument filtering Pi contains the following mapping:
const(x1) = const(x1)
1 = 1
0 = 0
+(x1, x2) = +(x1, x2)
*(x1, x2) = *(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U3_AA(x1, x2, x3, x4, x5) = U3_AA(x5)
U1_AA(x1, x2, x3, x4, x5) = U1_AA(x5)
P_IN_AA(x1, x2) = P_IN_AA
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
P_IN_AA → P_IN_AA
P_IN_AA → U1_AA(p_in_aa)
P_IN_AA → U3_AA(p_in_aa)
U3_AA(p_out_aa) → P_IN_AA
U1_AA(p_out_aa) → P_IN_AA
The TRS R consists of the following rules:
p_in_aa → p_out_aa
p_in_aa → U1_aa(p_in_aa)
p_in_aa → U3_aa(p_in_aa)
U1_aa(p_out_aa) → U2_aa(p_in_aa)
U3_aa(p_out_aa) → U4_aa(p_in_aa)
U2_aa(p_out_aa) → p_out_aa
U4_aa(p_out_aa) → p_out_aa
The set Q consists of the following terms:
p_in_aa
U1_aa(x0)
U3_aa(x0)
U2_aa(x0)
U4_aa(x0)
We have to consider all (P,Q,R)-chains.
By narrowing [15] the rule P_IN_AA → U3_AA(p_in_aa) at position [0] we obtained the following new rules:
P_IN_AA → U3_AA(p_out_aa)
P_IN_AA → U3_AA(U1_aa(p_in_aa))
P_IN_AA → U3_AA(U3_aa(p_in_aa))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
P_IN_AA → P_IN_AA
P_IN_AA → U3_AA(p_out_aa)
P_IN_AA → U1_AA(p_in_aa)
U3_AA(p_out_aa) → P_IN_AA
P_IN_AA → U3_AA(U1_aa(p_in_aa))
P_IN_AA → U3_AA(U3_aa(p_in_aa))
U1_AA(p_out_aa) → P_IN_AA
The TRS R consists of the following rules:
p_in_aa → p_out_aa
p_in_aa → U1_aa(p_in_aa)
p_in_aa → U3_aa(p_in_aa)
U1_aa(p_out_aa) → U2_aa(p_in_aa)
U3_aa(p_out_aa) → U4_aa(p_in_aa)
U2_aa(p_out_aa) → p_out_aa
U4_aa(p_out_aa) → p_out_aa
The set Q consists of the following terms:
p_in_aa
U1_aa(x0)
U3_aa(x0)
U2_aa(x0)
U4_aa(x0)
We have to consider all (P,Q,R)-chains.
By narrowing [15] the rule P_IN_AA → U1_AA(p_in_aa) at position [0] we obtained the following new rules:
P_IN_AA → U1_AA(U3_aa(p_in_aa))
P_IN_AA → U1_AA(p_out_aa)
P_IN_AA → U1_AA(U1_aa(p_in_aa))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ NonTerminationProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
P_IN_AA → P_IN_AA
P_IN_AA → U3_AA(p_out_aa)
P_IN_AA → U1_AA(U1_aa(p_in_aa))
U3_AA(p_out_aa) → P_IN_AA
P_IN_AA → U1_AA(U3_aa(p_in_aa))
P_IN_AA → U1_AA(p_out_aa)
P_IN_AA → U3_AA(U1_aa(p_in_aa))
P_IN_AA → U3_AA(U3_aa(p_in_aa))
U1_AA(p_out_aa) → P_IN_AA
The TRS R consists of the following rules:
p_in_aa → p_out_aa
p_in_aa → U1_aa(p_in_aa)
p_in_aa → U3_aa(p_in_aa)
U1_aa(p_out_aa) → U2_aa(p_in_aa)
U3_aa(p_out_aa) → U4_aa(p_in_aa)
U2_aa(p_out_aa) → p_out_aa
U4_aa(p_out_aa) → p_out_aa
The set Q consists of the following terms:
p_in_aa
U1_aa(x0)
U3_aa(x0)
U2_aa(x0)
U4_aa(x0)
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
P_IN_AA → P_IN_AA
P_IN_AA → U3_AA(p_out_aa)
P_IN_AA → U1_AA(U1_aa(p_in_aa))
U3_AA(p_out_aa) → P_IN_AA
P_IN_AA → U1_AA(U3_aa(p_in_aa))
P_IN_AA → U1_AA(p_out_aa)
P_IN_AA → U3_AA(U1_aa(p_in_aa))
P_IN_AA → U3_AA(U3_aa(p_in_aa))
U1_AA(p_out_aa) → P_IN_AA
The TRS R consists of the following rules:
p_in_aa → p_out_aa
p_in_aa → U1_aa(p_in_aa)
p_in_aa → U3_aa(p_in_aa)
U1_aa(p_out_aa) → U2_aa(p_in_aa)
U3_aa(p_out_aa) → U4_aa(p_in_aa)
U2_aa(p_out_aa) → p_out_aa
U4_aa(p_out_aa) → p_out_aa
s = P_IN_AA evaluates to t =P_IN_AA
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from P_IN_AA to P_IN_AA.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AA(d(d(X)), DDX) → P_IN_AA(d(X), DX)
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x2, x3, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x2, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x2, x3, x5)
U5_gg(x1, x2, x3) = U5_gg(x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x5)
P_IN_AA(x1, x2) = P_IN_AA
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AA(d(d(X)), DDX) → P_IN_AA(d(X), DX)
R is empty.
The argument filtering Pi contains the following mapping:
d(x1) = d(x1)
P_IN_AA(x1, x2) = P_IN_AA
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
P_IN_AA → P_IN_AA
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
P_IN_AA → P_IN_AA
The TRS R consists of the following rules:none
s = P_IN_AA evaluates to t =P_IN_AA
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from P_IN_AA to P_IN_AA.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x2, x3, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x2, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x2, x3, x5)
U5_gg(x1, x2, x3) = U5_gg(x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x5)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x2, x5)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
The argument filtering Pi contains the following mapping:
const(x1) = const(x1)
1 = 1
0 = 0
+(x1, x2) = +(x1, x2)
*(x1, x2) = *(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x2, x5)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(*(X, Y)))) → U3_GA(X, Y, p_in_ga(d(e(X))))
U3_GA(X, Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
P_IN_GA(d(e(*(X, Y)))) → P_IN_GA(d(e(X)))
U1_GA(Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
P_IN_GA(d(e(+(X, Y)))) → P_IN_GA(d(e(X)))
P_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, p_in_ga(d(e(X))))
The TRS R consists of the following rules:
p_in_ga(d(e(t))) → p_out_ga(const(1))
p_in_ga(d(e(const(A)))) → p_out_ga(const(0))
p_in_ga(d(e(+(X, Y)))) → U1_ga(Y, p_in_ga(d(e(X))))
p_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, p_in_ga(d(e(X))))
U1_ga(Y, p_out_ga(DX)) → U2_ga(DX, p_in_ga(d(e(Y))))
U3_ga(X, Y, p_out_ga(DX)) → U4_ga(X, Y, DX, p_in_ga(d(e(Y))))
U2_ga(DX, p_out_ga(DY)) → p_out_ga(+(DX, DY))
U4_ga(X, Y, DX, p_out_ga(DY)) → p_out_ga(+(*(X, DY), *(Y, DX)))
The set Q consists of the following terms:
p_in_ga(x0)
U1_ga(x0, x1)
U3_ga(x0, x1, x2)
U2_ga(x0, x1)
U4_ga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
P_IN_GA(d(e(*(X, Y)))) → U3_GA(X, Y, p_in_ga(d(e(X))))
P_IN_GA(d(e(*(X, Y)))) → P_IN_GA(d(e(X)))
The remaining pairs can at least be oriented weakly.
U3_GA(X, Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
U1_GA(Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
P_IN_GA(d(e(+(X, Y)))) → P_IN_GA(d(e(X)))
P_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, p_in_ga(d(e(X))))
Used ordering: Polynomial interpretation [25]:
POL(*(x1, x2)) = 1 + x1 + x2
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
POL(1) = 0
POL(P_IN_GA(x1)) = x1
POL(U1_GA(x1, x2)) = x1
POL(U1_ga(x1, x2)) = 0
POL(U2_ga(x1, x2)) = 0
POL(U3_GA(x1, x2, x3)) = x2
POL(U3_ga(x1, x2, x3)) = 0
POL(U4_ga(x1, x2, x3, x4)) = 0
POL(const(x1)) = 0
POL(d(x1)) = x1
POL(e(x1)) = x1
POL(p_in_ga(x1)) = 0
POL(p_out_ga(x1)) = 0
POL(t) = 0
The following usable rules [17] were oriented:
none
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
U3_GA(X, Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
U1_GA(Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
P_IN_GA(d(e(+(X, Y)))) → P_IN_GA(d(e(X)))
P_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, p_in_ga(d(e(X))))
The TRS R consists of the following rules:
p_in_ga(d(e(t))) → p_out_ga(const(1))
p_in_ga(d(e(const(A)))) → p_out_ga(const(0))
p_in_ga(d(e(+(X, Y)))) → U1_ga(Y, p_in_ga(d(e(X))))
p_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, p_in_ga(d(e(X))))
U1_ga(Y, p_out_ga(DX)) → U2_ga(DX, p_in_ga(d(e(Y))))
U3_ga(X, Y, p_out_ga(DX)) → U4_ga(X, Y, DX, p_in_ga(d(e(Y))))
U2_ga(DX, p_out_ga(DY)) → p_out_ga(+(DX, DY))
U4_ga(X, Y, DX, p_out_ga(DY)) → p_out_ga(+(*(X, DY), *(Y, DX)))
The set Q consists of the following terms:
p_in_ga(x0)
U1_ga(x0, x1)
U3_ga(x0, x1, x2)
U2_ga(x0, x1)
U4_ga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
U1_GA(Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
P_IN_GA(d(e(+(X, Y)))) → P_IN_GA(d(e(X)))
P_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, p_in_ga(d(e(X))))
The TRS R consists of the following rules:
p_in_ga(d(e(t))) → p_out_ga(const(1))
p_in_ga(d(e(const(A)))) → p_out_ga(const(0))
p_in_ga(d(e(+(X, Y)))) → U1_ga(Y, p_in_ga(d(e(X))))
p_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, p_in_ga(d(e(X))))
U1_ga(Y, p_out_ga(DX)) → U2_ga(DX, p_in_ga(d(e(Y))))
U3_ga(X, Y, p_out_ga(DX)) → U4_ga(X, Y, DX, p_in_ga(d(e(Y))))
U2_ga(DX, p_out_ga(DY)) → p_out_ga(+(DX, DY))
U4_ga(X, Y, DX, p_out_ga(DY)) → p_out_ga(+(*(X, DY), *(Y, DX)))
The set Q consists of the following terms:
p_in_ga(x0)
U1_ga(x0, x1)
U3_ga(x0, x1, x2)
U2_ga(x0, x1)
U4_ga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
P_IN_GA(d(e(+(X, Y)))) → P_IN_GA(d(e(X)))
P_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, p_in_ga(d(e(X))))
The remaining pairs can at least be oriented weakly.
U1_GA(Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U2_ga(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( *(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U1_ga(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U4_ga(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( +(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U3_ga(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
Tuple symbols:
M( U1_GA(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
none
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
U1_GA(Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
The TRS R consists of the following rules:
p_in_ga(d(e(t))) → p_out_ga(const(1))
p_in_ga(d(e(const(A)))) → p_out_ga(const(0))
p_in_ga(d(e(+(X, Y)))) → U1_ga(Y, p_in_ga(d(e(X))))
p_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, p_in_ga(d(e(X))))
U1_ga(Y, p_out_ga(DX)) → U2_ga(DX, p_in_ga(d(e(Y))))
U3_ga(X, Y, p_out_ga(DX)) → U4_ga(X, Y, DX, p_in_ga(d(e(Y))))
U2_ga(DX, p_out_ga(DY)) → p_out_ga(+(DX, DY))
U4_ga(X, Y, DX, p_out_ga(DY)) → p_out_ga(+(*(X, DY), *(Y, DX)))
The set Q consists of the following terms:
p_in_ga(x0)
U1_ga(x0, x1)
U3_ga(x0, x1, x2)
U2_ga(x0, x1)
U4_ga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x2, x3, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x2, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x2, x3, x5)
U5_gg(x1, x2, x3) = U5_gg(x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x5)
P_IN_GA(x1, x2) = P_IN_GA(x1)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
R is empty.
The argument filtering Pi contains the following mapping:
d(x1) = d(x1)
P_IN_GA(x1, x2) = P_IN_GA(x1)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(d(X))) → P_IN_GA(d(X))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- P_IN_GA(d(d(X))) → P_IN_GA(d(X))
The graph contains the following edges 1 > 1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
U1_GG(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GG(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
U3_GG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → U1_GG(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x2, x3, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x2, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x2, x3, x5)
U5_gg(x1, x2, x3) = U5_gg(x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x5)
U1_GG(x1, x2, x3, x4, x5) = U1_GG(x2, x4, x5)
P_IN_GG(x1, x2) = P_IN_GG(x1, x2)
U3_GG(x1, x2, x3, x4, x5) = U3_GG(x2, x3, x5)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
U1_GG(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GG(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
U3_GG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → U1_GG(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
The TRS R consists of the following rules:
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
The argument filtering Pi contains the following mapping:
const(x1) = const(x1)
1 = 1
0 = 0
+(x1, x2) = +(x1, x2)
*(x1, x2) = *(x1, x2)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x2, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x2, x3, x5)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x5)
U1_GG(x1, x2, x3, x4, x5) = U1_GG(x2, x4, x5)
P_IN_GG(x1, x2) = P_IN_GG(x1, x2)
U3_GG(x1, x2, x3, x4, x5) = U3_GG(x2, x3, x5)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GG(Y, DY, p_in_gg(d(e(X)), DX))
U1_GG(Y, DY, p_out_gg) → P_IN_GG(d(e(Y)), DY)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
U3_GG(Y, DY, p_out_gg) → P_IN_GG(d(e(Y)), DY)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → U1_GG(Y, DY, p_in_gg(d(e(X)), DX))
The TRS R consists of the following rules:
p_in_gg(d(e(t)), const(1)) → p_out_gg
p_in_gg(d(e(const(A))), const(0)) → p_out_gg
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(Y, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(Y, DY, p_in_gg(d(e(X)), DX))
U1_gg(Y, DY, p_out_gg) → U2_gg(p_in_gg(d(e(Y)), DY))
U3_gg(Y, DY, p_out_gg) → U4_gg(p_in_gg(d(e(Y)), DY))
U2_gg(p_out_gg) → p_out_gg
U4_gg(p_out_gg) → p_out_gg
The set Q consists of the following terms:
p_in_gg(x0, x1)
U1_gg(x0, x1, x2)
U3_gg(x0, x1, x2)
U2_gg(x0)
U4_gg(x0)
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → U1_GG(Y, DY, p_in_gg(d(e(X)), DX))
The graph contains the following edges 1 > 1, 2 > 2
- P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GG(Y, DY, p_in_gg(d(e(X)), DX))
The graph contains the following edges 1 > 1, 2 > 1, 2 > 2
- U3_GG(Y, DY, p_out_gg) → P_IN_GG(d(e(Y)), DY)
The graph contains the following edges 2 >= 2
- U1_GG(Y, DY, p_out_gg) → P_IN_GG(d(e(Y)), DY)
The graph contains the following edges 2 >= 2
- P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
The graph contains the following edges 2 > 2
- P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → P_IN_GG(d(e(X)), DX)
The graph contains the following edges 2 > 2
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → P_IN_AG(d(e(X)), DX)
U1_AG(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → P_IN_AG(d(e(Y)), DY)
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → U1_AG(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x2, x3, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x2, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x2, x3, x5)
U5_gg(x1, x2, x3) = U5_gg(x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x5)
U1_AG(x1, x2, x3, x4, x5) = U1_AG(x4, x5)
P_IN_AG(x1, x2) = P_IN_AG(x2)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → P_IN_AG(d(e(X)), DX)
U1_AG(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → P_IN_AG(d(e(Y)), DY)
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → U1_AG(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x2, x3, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x2, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x2, x3, x5)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x5)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x5)
U1_AG(x1, x2, x3, x4, x5) = U1_AG(x4, x5)
P_IN_AG(x1, x2) = P_IN_AG(x2)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
U1_AG(DY, p_out_ag) → P_IN_AG(DY)
P_IN_AG(+(DX, DY)) → U1_AG(DY, p_in_ag(DX))
P_IN_AG(+(DX, DY)) → P_IN_AG(DX)
The TRS R consists of the following rules:
p_in_ag(const(1)) → p_out_ag
p_in_ag(const(0)) → p_out_ag
p_in_ag(+(DX, DY)) → U1_ag(DY, p_in_ag(DX))
p_in_ag(+(*(X, DY), *(Y, DX))) → U3_ag(Y, DY, p_in_gg(d(e(X)), DX))
U1_ag(DY, p_out_ag) → U2_ag(p_in_ag(DY))
U3_ag(Y, DY, p_out_gg) → U4_ag(p_in_gg(d(e(Y)), DY))
U2_ag(p_out_ag) → p_out_ag
p_in_gg(d(e(t)), const(1)) → p_out_gg
p_in_gg(d(e(const(A))), const(0)) → p_out_gg
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(Y, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(Y, DY, p_in_gg(d(e(X)), DX))
U4_ag(p_out_gg) → p_out_ag
U1_gg(Y, DY, p_out_gg) → U2_gg(p_in_gg(d(e(Y)), DY))
U3_gg(Y, DY, p_out_gg) → U4_gg(p_in_gg(d(e(Y)), DY))
U2_gg(p_out_gg) → p_out_gg
U4_gg(p_out_gg) → p_out_gg
The set Q consists of the following terms:
p_in_ag(x0)
U1_ag(x0, x1)
U3_ag(x0, x1, x2)
U2_ag(x0)
p_in_gg(x0, x1)
U4_ag(x0)
U1_gg(x0, x1, x2)
U3_gg(x0, x1, x2)
U2_gg(x0)
U4_gg(x0)
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- P_IN_AG(+(DX, DY)) → P_IN_AG(DX)
The graph contains the following edges 1 > 1
- P_IN_AG(+(DX, DY)) → U1_AG(DY, p_in_ag(DX))
The graph contains the following edges 1 > 1
- U1_AG(DY, p_out_ag) → P_IN_AG(DY)
The graph contains the following edges 1 >= 1
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (f,b) (b,b) (b,f) (f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag(x2)
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x3, x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x1, x2, x3, x4, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg(x1, x2)
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x1, x2, x3, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x1, x2, x3, x4, x5)
U5_gg(x1, x2, x3) = U5_gg(x1, x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x1, x2, x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x1, x2, x3, x4, x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x1, x2, x3, x4, x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x1, x2, x3, x4, x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x2, x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x3, x4, x5)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag(x2)
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x3, x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x1, x2, x3, x4, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg(x1, x2)
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x1, x2, x3, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x1, x2, x3, x4, x5)
U5_gg(x1, x2, x3) = U5_gg(x1, x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x1, x2, x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x1, x2, x3, x4, x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x1, x2, x3, x4, x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x1, x2, x3, x4, x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x2, x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x3, x4, x5)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → U1_AG(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → P_IN_AG(d(e(X)), DX)
P_IN_AG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_AG(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
P_IN_AG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → U1_GG(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GG(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(d(X)), DDX) → U5_GG(X, DDX, p_in_ga(d(X), DX))
P_IN_GG(d(d(X)), DDX) → P_IN_GA(d(X), DX)
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(d(X)), DDX) → U5_GA(X, DDX, p_in_ga(d(X), DX))
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
U5_GA(X, DDX, p_out_ga(d(X), DX)) → U6_GA(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U5_GA(X, DDX, p_out_ga(d(X), DX)) → P_IN_GA(d(e(DX)), DDX)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_GA(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_GA(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U5_GG(X, DDX, p_out_ga(d(X), DX)) → U6_GG(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U5_GG(X, DDX, p_out_ga(d(X), DX)) → P_IN_GG(d(e(DX)), DDX)
U3_GG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_GG(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U3_GG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
U1_GG(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_GG(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U1_GG(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
U3_AG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_AG(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U3_AG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
P_IN_AG(d(d(X)), DDX) → U5_AG(X, DDX, p_in_aa(d(X), DX))
P_IN_AG(d(d(X)), DDX) → P_IN_AA(d(X), DX)
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → U1_AA(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → P_IN_AA(d(e(X)), DX)
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_AA(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_AA(d(e(X)), DX)
P_IN_AA(d(d(X)), DDX) → U5_AA(X, DDX, p_in_aa(d(X), DX))
P_IN_AA(d(d(X)), DDX) → P_IN_AA(d(X), DX)
U5_AA(X, DDX, p_out_aa(d(X), DX)) → U6_AA(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U5_AA(X, DDX, p_out_aa(d(X), DX)) → P_IN_AA(d(e(DX)), DDX)
U3_AA(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_AA(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U3_AA(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
U1_AA(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_AA(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U1_AA(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
U5_AG(X, DDX, p_out_aa(d(X), DX)) → U6_AG(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U5_AG(X, DDX, p_out_aa(d(X), DX)) → P_IN_AG(d(e(DX)), DDX)
U1_AG(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_AG(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U1_AG(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → P_IN_AG(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag(x2)
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x3, x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x1, x2, x3, x4, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg(x1, x2)
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x1, x2, x3, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x1, x2, x3, x4, x5)
U5_gg(x1, x2, x3) = U5_gg(x1, x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x1, x2, x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x1, x2, x3, x4, x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x1, x2, x3, x4, x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x1, x2, x3, x4, x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x2, x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x3, x4, x5)
U5_GG(x1, x2, x3) = U5_GG(x1, x2, x3)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U5_GA(x1, x2, x3) = U5_GA(x1, x3)
U4_GA(x1, x2, x3, x4, x5) = U4_GA(x1, x2, x4, x5)
U4_GG(x1, x2, x3, x4, x5) = U4_GG(x1, x2, x3, x4, x5)
U3_AA(x1, x2, x3, x4, x5) = U3_AA(x5)
U3_AG(x1, x2, x3, x4, x5) = U3_AG(x1, x2, x3, x4, x5)
U2_GA(x1, x2, x3, x4, x5) = U2_GA(x1, x2, x3, x5)
U1_GG(x1, x2, x3, x4, x5) = U1_GG(x1, x2, x3, x4, x5)
U4_AG(x1, x2, x3, x4, x5) = U4_AG(x1, x2, x3, x4, x5)
U2_AA(x1, x2, x3, x4, x5) = U2_AA(x5)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
U1_AG(x1, x2, x3, x4, x5) = U1_AG(x3, x4, x5)
U4_AA(x1, x2, x3, x4, x5) = U4_AA(x5)
U6_GA(x1, x2, x3, x4) = U6_GA(x1, x4)
U6_GG(x1, x2, x3, x4) = U6_GG(x1, x2, x4)
U6_AA(x1, x2, x3, x4) = U6_AA(x4)
U5_AG(x1, x2, x3) = U5_AG(x2, x3)
P_IN_GG(x1, x2) = P_IN_GG(x1, x2)
U2_AG(x1, x2, x3, x4, x5) = U2_AG(x3, x4, x5)
U1_AA(x1, x2, x3, x4, x5) = U1_AA(x5)
U3_GG(x1, x2, x3, x4, x5) = U3_GG(x1, x2, x3, x4, x5)
P_IN_AG(x1, x2) = P_IN_AG(x2)
U5_AA(x1, x2, x3) = U5_AA(x3)
U6_AG(x1, x2, x3, x4) = U6_AG(x2, x4)
P_IN_AA(x1, x2) = P_IN_AA
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x1, x2, x5)
U2_GG(x1, x2, x3, x4, x5) = U2_GG(x1, x2, x3, x4, x5)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → U1_AG(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → P_IN_AG(d(e(X)), DX)
P_IN_AG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_AG(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
P_IN_AG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → U1_GG(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GG(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(d(X)), DDX) → U5_GG(X, DDX, p_in_ga(d(X), DX))
P_IN_GG(d(d(X)), DDX) → P_IN_GA(d(X), DX)
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(d(X)), DDX) → U5_GA(X, DDX, p_in_ga(d(X), DX))
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
U5_GA(X, DDX, p_out_ga(d(X), DX)) → U6_GA(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U5_GA(X, DDX, p_out_ga(d(X), DX)) → P_IN_GA(d(e(DX)), DDX)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_GA(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_GA(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U5_GG(X, DDX, p_out_ga(d(X), DX)) → U6_GG(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U5_GG(X, DDX, p_out_ga(d(X), DX)) → P_IN_GG(d(e(DX)), DDX)
U3_GG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_GG(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U3_GG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
U1_GG(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_GG(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U1_GG(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
U3_AG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_AG(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U3_AG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
P_IN_AG(d(d(X)), DDX) → U5_AG(X, DDX, p_in_aa(d(X), DX))
P_IN_AG(d(d(X)), DDX) → P_IN_AA(d(X), DX)
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → U1_AA(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → P_IN_AA(d(e(X)), DX)
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_AA(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_AA(d(e(X)), DX)
P_IN_AA(d(d(X)), DDX) → U5_AA(X, DDX, p_in_aa(d(X), DX))
P_IN_AA(d(d(X)), DDX) → P_IN_AA(d(X), DX)
U5_AA(X, DDX, p_out_aa(d(X), DX)) → U6_AA(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U5_AA(X, DDX, p_out_aa(d(X), DX)) → P_IN_AA(d(e(DX)), DDX)
U3_AA(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_AA(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U3_AA(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
U1_AA(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_AA(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U1_AA(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
U5_AG(X, DDX, p_out_aa(d(X), DX)) → U6_AG(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U5_AG(X, DDX, p_out_aa(d(X), DX)) → P_IN_AG(d(e(DX)), DDX)
U1_AG(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_AG(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U1_AG(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → P_IN_AG(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag(x2)
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x3, x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x1, x2, x3, x4, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg(x1, x2)
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x1, x2, x3, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x1, x2, x3, x4, x5)
U5_gg(x1, x2, x3) = U5_gg(x1, x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x1, x2, x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x1, x2, x3, x4, x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x1, x2, x3, x4, x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x1, x2, x3, x4, x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x2, x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x3, x4, x5)
U5_GG(x1, x2, x3) = U5_GG(x1, x2, x3)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U5_GA(x1, x2, x3) = U5_GA(x1, x3)
U4_GA(x1, x2, x3, x4, x5) = U4_GA(x1, x2, x4, x5)
U4_GG(x1, x2, x3, x4, x5) = U4_GG(x1, x2, x3, x4, x5)
U3_AA(x1, x2, x3, x4, x5) = U3_AA(x5)
U3_AG(x1, x2, x3, x4, x5) = U3_AG(x1, x2, x3, x4, x5)
U2_GA(x1, x2, x3, x4, x5) = U2_GA(x1, x2, x3, x5)
U1_GG(x1, x2, x3, x4, x5) = U1_GG(x1, x2, x3, x4, x5)
U4_AG(x1, x2, x3, x4, x5) = U4_AG(x1, x2, x3, x4, x5)
U2_AA(x1, x2, x3, x4, x5) = U2_AA(x5)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
U1_AG(x1, x2, x3, x4, x5) = U1_AG(x3, x4, x5)
U4_AA(x1, x2, x3, x4, x5) = U4_AA(x5)
U6_GA(x1, x2, x3, x4) = U6_GA(x1, x4)
U6_GG(x1, x2, x3, x4) = U6_GG(x1, x2, x4)
U6_AA(x1, x2, x3, x4) = U6_AA(x4)
U5_AG(x1, x2, x3) = U5_AG(x2, x3)
P_IN_GG(x1, x2) = P_IN_GG(x1, x2)
U2_AG(x1, x2, x3, x4, x5) = U2_AG(x3, x4, x5)
U1_AA(x1, x2, x3, x4, x5) = U1_AA(x5)
U3_GG(x1, x2, x3, x4, x5) = U3_GG(x1, x2, x3, x4, x5)
P_IN_AG(x1, x2) = P_IN_AG(x2)
U5_AA(x1, x2, x3) = U5_AA(x3)
U6_AG(x1, x2, x3, x4) = U6_AG(x2, x4)
P_IN_AA(x1, x2) = P_IN_AA
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x1, x2, x5)
U2_GG(x1, x2, x3, x4, x5) = U2_GG(x1, x2, x3, x4, x5)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 6 SCCs with 25 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_AA(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → P_IN_AA(d(e(X)), DX)
U1_AA(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
U3_AA(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → U1_AA(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_AA(d(e(X)), DX)
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag(x2)
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x3, x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x1, x2, x3, x4, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg(x1, x2)
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x1, x2, x3, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x1, x2, x3, x4, x5)
U5_gg(x1, x2, x3) = U5_gg(x1, x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x1, x2, x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x1, x2, x3, x4, x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x1, x2, x3, x4, x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x1, x2, x3, x4, x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x2, x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x3, x4, x5)
U3_AA(x1, x2, x3, x4, x5) = U3_AA(x5)
U1_AA(x1, x2, x3, x4, x5) = U1_AA(x5)
P_IN_AA(x1, x2) = P_IN_AA
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_AA(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → P_IN_AA(d(e(X)), DX)
U1_AA(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
U3_AA(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → P_IN_AA(d(e(Y)), DY)
P_IN_AA(d(e(+(X, Y))), +(DX, DY)) → U1_AA(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
P_IN_AA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_AA(d(e(X)), DX)
The TRS R consists of the following rules:
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
The argument filtering Pi contains the following mapping:
const(x1) = const(x1)
1 = 1
0 = 0
+(x1, x2) = +(x1, x2)
*(x1, x2) = *(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U3_AA(x1, x2, x3, x4, x5) = U3_AA(x5)
U1_AA(x1, x2, x3, x4, x5) = U1_AA(x5)
P_IN_AA(x1, x2) = P_IN_AA
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
Q DP problem:
The TRS P consists of the following rules:
P_IN_AA → P_IN_AA
P_IN_AA → U1_AA(p_in_aa)
P_IN_AA → U3_AA(p_in_aa)
U3_AA(p_out_aa) → P_IN_AA
U1_AA(p_out_aa) → P_IN_AA
The TRS R consists of the following rules:
p_in_aa → p_out_aa
p_in_aa → U1_aa(p_in_aa)
p_in_aa → U3_aa(p_in_aa)
U1_aa(p_out_aa) → U2_aa(p_in_aa)
U3_aa(p_out_aa) → U4_aa(p_in_aa)
U2_aa(p_out_aa) → p_out_aa
U4_aa(p_out_aa) → p_out_aa
The set Q consists of the following terms:
p_in_aa
U1_aa(x0)
U3_aa(x0)
U2_aa(x0)
U4_aa(x0)
We have to consider all (P,Q,R)-chains.
By narrowing [15] the rule P_IN_AA → U3_AA(p_in_aa) at position [0] we obtained the following new rules:
P_IN_AA → U3_AA(p_out_aa)
P_IN_AA → U3_AA(U1_aa(p_in_aa))
P_IN_AA → U3_AA(U3_aa(p_in_aa))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
Q DP problem:
The TRS P consists of the following rules:
P_IN_AA → P_IN_AA
P_IN_AA → U3_AA(p_out_aa)
P_IN_AA → U1_AA(p_in_aa)
U3_AA(p_out_aa) → P_IN_AA
P_IN_AA → U3_AA(U1_aa(p_in_aa))
P_IN_AA → U3_AA(U3_aa(p_in_aa))
U1_AA(p_out_aa) → P_IN_AA
The TRS R consists of the following rules:
p_in_aa → p_out_aa
p_in_aa → U1_aa(p_in_aa)
p_in_aa → U3_aa(p_in_aa)
U1_aa(p_out_aa) → U2_aa(p_in_aa)
U3_aa(p_out_aa) → U4_aa(p_in_aa)
U2_aa(p_out_aa) → p_out_aa
U4_aa(p_out_aa) → p_out_aa
The set Q consists of the following terms:
p_in_aa
U1_aa(x0)
U3_aa(x0)
U2_aa(x0)
U4_aa(x0)
We have to consider all (P,Q,R)-chains.
By narrowing [15] the rule P_IN_AA → U1_AA(p_in_aa) at position [0] we obtained the following new rules:
P_IN_AA → U1_AA(U3_aa(p_in_aa))
P_IN_AA → U1_AA(p_out_aa)
P_IN_AA → U1_AA(U1_aa(p_in_aa))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ NonTerminationProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
Q DP problem:
The TRS P consists of the following rules:
P_IN_AA → P_IN_AA
P_IN_AA → U3_AA(p_out_aa)
P_IN_AA → U1_AA(U1_aa(p_in_aa))
U3_AA(p_out_aa) → P_IN_AA
P_IN_AA → U1_AA(U3_aa(p_in_aa))
P_IN_AA → U1_AA(p_out_aa)
P_IN_AA → U3_AA(U1_aa(p_in_aa))
P_IN_AA → U3_AA(U3_aa(p_in_aa))
U1_AA(p_out_aa) → P_IN_AA
The TRS R consists of the following rules:
p_in_aa → p_out_aa
p_in_aa → U1_aa(p_in_aa)
p_in_aa → U3_aa(p_in_aa)
U1_aa(p_out_aa) → U2_aa(p_in_aa)
U3_aa(p_out_aa) → U4_aa(p_in_aa)
U2_aa(p_out_aa) → p_out_aa
U4_aa(p_out_aa) → p_out_aa
The set Q consists of the following terms:
p_in_aa
U1_aa(x0)
U3_aa(x0)
U2_aa(x0)
U4_aa(x0)
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
P_IN_AA → P_IN_AA
P_IN_AA → U3_AA(p_out_aa)
P_IN_AA → U1_AA(U1_aa(p_in_aa))
U3_AA(p_out_aa) → P_IN_AA
P_IN_AA → U1_AA(U3_aa(p_in_aa))
P_IN_AA → U1_AA(p_out_aa)
P_IN_AA → U3_AA(U1_aa(p_in_aa))
P_IN_AA → U3_AA(U3_aa(p_in_aa))
U1_AA(p_out_aa) → P_IN_AA
The TRS R consists of the following rules:
p_in_aa → p_out_aa
p_in_aa → U1_aa(p_in_aa)
p_in_aa → U3_aa(p_in_aa)
U1_aa(p_out_aa) → U2_aa(p_in_aa)
U3_aa(p_out_aa) → U4_aa(p_in_aa)
U2_aa(p_out_aa) → p_out_aa
U4_aa(p_out_aa) → p_out_aa
s = P_IN_AA evaluates to t =P_IN_AA
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from P_IN_AA to P_IN_AA.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AA(d(d(X)), DDX) → P_IN_AA(d(X), DX)
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag(x2)
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x3, x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x1, x2, x3, x4, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg(x1, x2)
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x1, x2, x3, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x1, x2, x3, x4, x5)
U5_gg(x1, x2, x3) = U5_gg(x1, x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x1, x2, x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x1, x2, x3, x4, x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x1, x2, x3, x4, x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x1, x2, x3, x4, x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x2, x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x3, x4, x5)
P_IN_AA(x1, x2) = P_IN_AA
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AA(d(d(X)), DDX) → P_IN_AA(d(X), DX)
R is empty.
The argument filtering Pi contains the following mapping:
d(x1) = d(x1)
P_IN_AA(x1, x2) = P_IN_AA
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
Q DP problem:
The TRS P consists of the following rules:
P_IN_AA → P_IN_AA
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
P_IN_AA → P_IN_AA
The TRS R consists of the following rules:none
s = P_IN_AA evaluates to t =P_IN_AA
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from P_IN_AA to P_IN_AA.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag(x2)
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x3, x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x1, x2, x3, x4, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg(x1, x2)
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x1, x2, x3, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x1, x2, x3, x4, x5)
U5_gg(x1, x2, x3) = U5_gg(x1, x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x1, x2, x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x1, x2, x3, x4, x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x1, x2, x3, x4, x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x1, x2, x3, x4, x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x2, x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x3, x4, x5)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x1, x2, x5)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
The argument filtering Pi contains the following mapping:
const(x1) = const(x1)
1 = 1
0 = 0
+(x1, x2) = +(x1, x2)
*(x1, x2) = *(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x1, x2, x5)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ PiDP
↳ PiDP
↳ PiDP
Q DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(*(X, Y)))) → U3_GA(X, Y, p_in_ga(d(e(X))))
P_IN_GA(d(e(+(X, Y)))) → U1_GA(X, Y, p_in_ga(d(e(X))))
P_IN_GA(d(e(*(X, Y)))) → P_IN_GA(d(e(X)))
P_IN_GA(d(e(+(X, Y)))) → P_IN_GA(d(e(X)))
U3_GA(X, Y, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)))
U1_GA(X, Y, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)))
The TRS R consists of the following rules:
p_in_ga(d(e(t))) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A)))) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y)))) → U1_ga(X, Y, p_in_ga(d(e(X))))
p_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, p_in_ga(d(e(X))))
U1_ga(X, Y, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, p_in_ga(d(e(Y))))
U3_ga(X, Y, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DX, p_in_ga(d(e(Y))))
U2_ga(X, Y, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U4_ga(X, Y, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
The set Q consists of the following terms:
p_in_ga(x0)
U1_ga(x0, x1, x2)
U3_ga(x0, x1, x2)
U2_ga(x0, x1, x2, x3)
U4_ga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
P_IN_GA(d(e(*(X, Y)))) → P_IN_GA(d(e(X)))
P_IN_GA(d(e(+(X, Y)))) → P_IN_GA(d(e(X)))
U3_GA(X, Y, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)))
U1_GA(X, Y, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)))
The remaining pairs can at least be oriented weakly.
P_IN_GA(d(e(*(X, Y)))) → U3_GA(X, Y, p_in_ga(d(e(X))))
P_IN_GA(d(e(+(X, Y)))) → U1_GA(X, Y, p_in_ga(d(e(X))))
Used ordering: Polynomial interpretation [25]:
POL(*(x1, x2)) = 1 + x1 + x2
POL(+(x1, x2)) = 1 + x1 + x2
POL(0) = 0
POL(1) = 0
POL(P_IN_GA(x1)) = x1
POL(U1_GA(x1, x2, x3)) = 1 + x2
POL(U1_ga(x1, x2, x3)) = 0
POL(U2_ga(x1, x2, x3, x4)) = 0
POL(U3_GA(x1, x2, x3)) = 1 + x2
POL(U3_ga(x1, x2, x3)) = 0
POL(U4_ga(x1, x2, x3, x4)) = 0
POL(const(x1)) = 0
POL(d(x1)) = x1
POL(e(x1)) = x1
POL(p_in_ga(x1)) = 0
POL(p_out_ga(x1, x2)) = 0
POL(t) = 0
The following usable rules [17] were oriented:
none
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDP
↳ PiDP
Q DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(*(X, Y)))) → U3_GA(X, Y, p_in_ga(d(e(X))))
P_IN_GA(d(e(+(X, Y)))) → U1_GA(X, Y, p_in_ga(d(e(X))))
The TRS R consists of the following rules:
p_in_ga(d(e(t))) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A)))) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y)))) → U1_ga(X, Y, p_in_ga(d(e(X))))
p_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, p_in_ga(d(e(X))))
U1_ga(X, Y, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, p_in_ga(d(e(Y))))
U3_ga(X, Y, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DX, p_in_ga(d(e(Y))))
U2_ga(X, Y, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U4_ga(X, Y, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
The set Q consists of the following terms:
p_in_ga(x0)
U1_ga(x0, x1, x2)
U3_ga(x0, x1, x2)
U2_ga(x0, x1, x2, x3)
U4_ga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag(x2)
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x3, x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x1, x2, x3, x4, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg(x1, x2)
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x1, x2, x3, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x1, x2, x3, x4, x5)
U5_gg(x1, x2, x3) = U5_gg(x1, x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x1, x2, x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x1, x2, x3, x4, x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x1, x2, x3, x4, x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x1, x2, x3, x4, x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x2, x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x3, x4, x5)
P_IN_GA(x1, x2) = P_IN_GA(x1)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
R is empty.
The argument filtering Pi contains the following mapping:
d(x1) = d(x1)
P_IN_GA(x1, x2) = P_IN_GA(x1)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
Q DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(d(X))) → P_IN_GA(d(X))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- P_IN_GA(d(d(X))) → P_IN_GA(d(X))
The graph contains the following edges 1 > 1
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
U1_GG(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GG(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
U3_GG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → U1_GG(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag(x2)
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x3, x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x1, x2, x3, x4, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg(x1, x2)
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x1, x2, x3, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x1, x2, x3, x4, x5)
U5_gg(x1, x2, x3) = U5_gg(x1, x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x1, x2, x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x1, x2, x3, x4, x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x1, x2, x3, x4, x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x1, x2, x3, x4, x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x2, x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x3, x4, x5)
U1_GG(x1, x2, x3, x4, x5) = U1_GG(x1, x2, x3, x4, x5)
P_IN_GG(x1, x2) = P_IN_GG(x1, x2)
U3_GG(x1, x2, x3, x4, x5) = U3_GG(x1, x2, x3, x4, x5)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
U1_GG(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GG(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
U3_GG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → U1_GG(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
The TRS R consists of the following rules:
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
Q DP problem:
The TRS P consists of the following rules:
U1_GG(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GG(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → U1_GG(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
U3_GG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
The set Q consists of the following terms:
p_in_gg(x0, x1)
U1_gg(x0, x1, x2, x3, x4)
U3_gg(x0, x1, x2, x3, x4)
U2_gg(x0, x1, x2, x3, x4)
U4_gg(x0, x1, x2, x3, x4)
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → U1_GG(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
The graph contains the following edges 1 > 1, 1 > 2, 2 > 3, 2 > 4
- P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GG(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
The graph contains the following edges 1 > 1, 2 > 1, 1 > 2, 2 > 2, 2 > 3, 2 > 4
- U3_GG(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
The graph contains the following edges 3 >= 2
- U1_GG(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → P_IN_GG(d(e(Y)), DY)
The graph contains the following edges 4 >= 2
- P_IN_GG(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GG(d(e(X)), DX)
The graph contains the following edges 2 > 2
- P_IN_GG(d(e(+(X, Y))), +(DX, DY)) → P_IN_GG(d(e(X)), DX)
The graph contains the following edges 2 > 2
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → P_IN_AG(d(e(X)), DX)
U1_AG(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → P_IN_AG(d(e(Y)), DY)
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → U1_AG(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
p_in_gg(d(d(X)), DDX) → U5_gg(X, DDX, p_in_ga(d(X), DX))
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U5_gg(X, DDX, p_out_ga(d(X), DX)) → U6_gg(X, DDX, DX, p_in_gg(d(e(DX)), DDX))
U6_gg(X, DDX, DX, p_out_gg(d(e(DX)), DDX)) → p_out_gg(d(d(X)), DDX)
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
p_in_ag(d(d(X)), DDX) → U5_ag(X, DDX, p_in_aa(d(X), DX))
p_in_aa(d(e(t)), const(1)) → p_out_aa(d(e(t)), const(1))
p_in_aa(d(e(const(A))), const(0)) → p_out_aa(d(e(const(A))), const(0))
p_in_aa(d(e(+(X, Y))), +(DX, DY)) → U1_aa(X, Y, DX, DY, p_in_aa(d(e(X)), DX))
p_in_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_aa(X, Y, DY, DX, p_in_aa(d(e(X)), DX))
p_in_aa(d(d(X)), DDX) → U5_aa(X, DDX, p_in_aa(d(X), DX))
U5_aa(X, DDX, p_out_aa(d(X), DX)) → U6_aa(X, DDX, DX, p_in_aa(d(e(DX)), DDX))
U6_aa(X, DDX, DX, p_out_aa(d(e(DX)), DDX)) → p_out_aa(d(d(X)), DDX)
U3_aa(X, Y, DY, DX, p_out_aa(d(e(X)), DX)) → U4_aa(X, Y, DY, DX, p_in_aa(d(e(Y)), DY))
U4_aa(X, Y, DY, DX, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_aa(X, Y, DX, DY, p_out_aa(d(e(X)), DX)) → U2_aa(X, Y, DX, DY, p_in_aa(d(e(Y)), DY))
U2_aa(X, Y, DX, DY, p_out_aa(d(e(Y)), DY)) → p_out_aa(d(e(+(X, Y))), +(DX, DY))
U5_ag(X, DDX, p_out_aa(d(X), DX)) → U6_ag(X, DDX, DX, p_in_ag(d(e(DX)), DDX))
U6_ag(X, DDX, DX, p_out_ag(d(e(DX)), DDX)) → p_out_ag(d(d(X)), DDX)
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag(x2)
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x3, x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x1, x2, x3, x4, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg(x1, x2)
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x1, x2, x3, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x1, x2, x3, x4, x5)
U5_gg(x1, x2, x3) = U5_gg(x1, x2, x3)
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
U6_gg(x1, x2, x3, x4) = U6_gg(x1, x2, x4)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x1, x2, x3, x4, x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x1, x2, x3, x4, x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x1, x2, x3, x4, x5)
U5_ag(x1, x2, x3) = U5_ag(x2, x3)
p_in_aa(x1, x2) = p_in_aa
p_out_aa(x1, x2) = p_out_aa
U1_aa(x1, x2, x3, x4, x5) = U1_aa(x5)
U3_aa(x1, x2, x3, x4, x5) = U3_aa(x5)
U5_aa(x1, x2, x3) = U5_aa(x3)
U6_aa(x1, x2, x3, x4) = U6_aa(x4)
U4_aa(x1, x2, x3, x4, x5) = U4_aa(x5)
U2_aa(x1, x2, x3, x4, x5) = U2_aa(x5)
U6_ag(x1, x2, x3, x4) = U6_ag(x2, x4)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x3, x4, x5)
U1_AG(x1, x2, x3, x4, x5) = U1_AG(x3, x4, x5)
P_IN_AG(x1, x2) = P_IN_AG(x2)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → P_IN_AG(d(e(X)), DX)
U1_AG(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → P_IN_AG(d(e(Y)), DY)
P_IN_AG(d(e(+(X, Y))), +(DX, DY)) → U1_AG(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
The TRS R consists of the following rules:
p_in_ag(d(e(t)), const(1)) → p_out_ag(d(e(t)), const(1))
p_in_ag(d(e(const(A))), const(0)) → p_out_ag(d(e(const(A))), const(0))
p_in_ag(d(e(+(X, Y))), +(DX, DY)) → U1_ag(X, Y, DX, DY, p_in_ag(d(e(X)), DX))
p_in_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
U1_ag(X, Y, DX, DY, p_out_ag(d(e(X)), DX)) → U2_ag(X, Y, DX, DY, p_in_ag(d(e(Y)), DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U2_ag(X, Y, DX, DY, p_out_ag(d(e(Y)), DY)) → p_out_ag(d(e(+(X, Y))), +(DX, DY))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
The argument filtering Pi contains the following mapping:
p_in_ag(x1, x2) = p_in_ag(x2)
const(x1) = const(x1)
1 = 1
p_out_ag(x1, x2) = p_out_ag(x2)
0 = 0
+(x1, x2) = +(x1, x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x3, x4, x5)
*(x1, x2) = *(x1, x2)
U3_ag(x1, x2, x3, x4, x5) = U3_ag(x1, x2, x3, x4, x5)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_gg(x1, x2) = p_out_gg(x1, x2)
U1_gg(x1, x2, x3, x4, x5) = U1_gg(x1, x2, x3, x4, x5)
U3_gg(x1, x2, x3, x4, x5) = U3_gg(x1, x2, x3, x4, x5)
U4_gg(x1, x2, x3, x4, x5) = U4_gg(x1, x2, x3, x4, x5)
U2_gg(x1, x2, x3, x4, x5) = U2_gg(x1, x2, x3, x4, x5)
U4_ag(x1, x2, x3, x4, x5) = U4_ag(x1, x2, x3, x4, x5)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x3, x4, x5)
U1_AG(x1, x2, x3, x4, x5) = U1_AG(x3, x4, x5)
P_IN_AG(x1, x2) = P_IN_AG(x2)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
P_IN_AG(+(DX, DY)) → U1_AG(DX, DY, p_in_ag(DX))
U1_AG(DX, DY, p_out_ag(DX)) → P_IN_AG(DY)
P_IN_AG(+(DX, DY)) → P_IN_AG(DX)
The TRS R consists of the following rules:
p_in_ag(const(1)) → p_out_ag(const(1))
p_in_ag(const(0)) → p_out_ag(const(0))
p_in_ag(+(DX, DY)) → U1_ag(DX, DY, p_in_ag(DX))
p_in_ag(+(*(X, DY), *(Y, DX))) → U3_ag(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
U1_ag(DX, DY, p_out_ag(DX)) → U2_ag(DX, DY, p_in_ag(DY))
U3_ag(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_ag(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U2_ag(DX, DY, p_out_ag(DY)) → p_out_ag(+(DX, DY))
p_in_gg(d(e(t)), const(1)) → p_out_gg(d(e(t)), const(1))
p_in_gg(d(e(const(A))), const(0)) → p_out_gg(d(e(const(A))), const(0))
p_in_gg(d(e(+(X, Y))), +(DX, DY)) → U1_gg(X, Y, DX, DY, p_in_gg(d(e(X)), DX))
p_in_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_gg(X, Y, DY, DX, p_in_gg(d(e(X)), DX))
U4_ag(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_ag(+(*(X, DY), *(Y, DX)))
U1_gg(X, Y, DX, DY, p_out_gg(d(e(X)), DX)) → U2_gg(X, Y, DX, DY, p_in_gg(d(e(Y)), DY))
U3_gg(X, Y, DY, DX, p_out_gg(d(e(X)), DX)) → U4_gg(X, Y, DY, DX, p_in_gg(d(e(Y)), DY))
U2_gg(X, Y, DX, DY, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(+(X, Y))), +(DX, DY))
U4_gg(X, Y, DY, DX, p_out_gg(d(e(Y)), DY)) → p_out_gg(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
The set Q consists of the following terms:
p_in_ag(x0)
U1_ag(x0, x1, x2)
U3_ag(x0, x1, x2, x3, x4)
U2_ag(x0, x1, x2)
p_in_gg(x0, x1)
U4_ag(x0, x1, x2, x3, x4)
U1_gg(x0, x1, x2, x3, x4)
U3_gg(x0, x1, x2, x3, x4)
U2_gg(x0, x1, x2, x3, x4)
U4_gg(x0, x1, x2, x3, x4)
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- P_IN_AG(+(DX, DY)) → P_IN_AG(DX)
The graph contains the following edges 1 > 1
- P_IN_AG(+(DX, DY)) → U1_AG(DX, DY, p_in_ag(DX))
The graph contains the following edges 1 > 1, 1 > 2
- U1_AG(DX, DY, p_out_ag(DX)) → P_IN_AG(DY)
The graph contains the following edges 2 >= 1